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LElTER TO THE EDITOR 

Parallel transport along a space curve and related phases 
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t T-11 and CNLS, Theoretical Division, Los Alamos National Laboratory, Los Alamos, 
New Mexico 87545, USA 
$ CNLS, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 
87545, USA 

Received 27 February 1989 

Abstract. We investigate geometrical properties of a space curve and of its spherical images. 
We show that a space curve is characterised by two ‘phase-like’ quantities and comment 
on the relation of these quantities to the Berry phase. 

In recent years there has been increased interest in phenomena which are associated 
with topological properties of the parameter space of a system under study. In 
particular, in a series of interesting papers, Berry [ I ]  showed that a quantum system, 
which depends on some parameters and which evolves in time in such a way that 
during the evolution the state of the system traces out a closed curve in the space of 
these parameters can, in addition to the ‘usual’ dynamical phase, pick up also a 
‘topological’ phase. This latter phase is associated with the motion of the system in 
the space of parameters. 

Although the overall phase of a quantum system is normally not observable, Berry 
[ l ]  discussed the cases when the topological phase of a subsystem can be observed 
through the interference with the phase of the other subsystem. 

A classic example of such a situation involves polarised light in waveguides, which 
are split and later, after one of the guides is acted upon by appropriate forces or just 
follows an appropriately twisted path, are recombined. The inteference of the recom- 
bined light provides us with information about the relative phases of light in both 
waveguides. 

This classic example has been studied by many people. In particular Ross [2], 
Tomita and Chiao, and Chiao and Wu [3] discussed this phenomenon for various 
configurations of the thin waveguides (optical fibres). Moreover Ross [2] experimentaly 
verified this effect for the case of a helical form of the fibre. More recently Haldane 
[4] and Kugler and Shtrikman [ 5 ]  stressed the geometrical nature of the effect and 
pointed out that the phenomenon of the phase dependence of the rotation of polarisa- 
tion in optical fibres can be understood in terms of the parallel transport along the 
fibre of the unit vector characterising the curve described by the fibre. 

In this letter we study in detail the geometrical properties of a space curve (in the 
physical context this curve represents the path traced out in the parameter space by 
the state of the system; in particular it could represent an optical fibre, etc). We 
concentrate our attention on the spherical images of the curve (the curves traced out 
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on S2 by the tangent, normal and binormal vectors of the space curve). We find that, 
in general, a space curve is characterised by two ‘phase-like’ quantities: the integral 
over the torsion and the integral over the curvature both calculated along the curve. 

As Kugler and Shtrikman [ 5 ]  have pointed out, the first of these quantities, in the 
context of the waveguides, corresponds to the Berry phase; as far as we are aware, 
the second one has not yet been shown to be physically observable. However, from 
the purely geometrical point of view both quantities are equally important and as we 
show below are closely related. 

A space curve is described either by its parameter equations or by its natural 
equations: K = K ( s ) ,  r = r (s) ,  where K, r and s are the curvature, the torsion and the 
length (treated as the natural parameter) of the space curve. Let us consider a curve 
y which in its parametric form is described by r = r ( s ) .  Let us also denote by r the 
unit tangent vector to this curve and by n and b its principal normal and binormal 
respectively. Then the three vectors t, n and b form a moving triad of the curve. 

As is well known, they are related by the Frenet-Serret formulae: 

? = K n  

i = - ~ t +  Tb (1) 
b=-m 

where the overdot denotes d/ds. If we parallel transport these vectors to the origin 
of the Cartesian coordinate system then, as these vectors are all of unit lengths, as the 
triad moves along the original space curve their ends generate three curves on the unit 
sphere S2. These curves on S2 are called spherical images of the space curve y or its 
tangent, principal normal and binormal indicatrices of the space curve. 

The elements of length along these curves ds,, ds, and dsb are given by: 

ds: = K’ ds2 

ds i  = ( K’ + T2)ds = ds: + ds i  

d s i  = 7’ ds2. 

If we introduce the Darboux vector [6] f the Frenet-Serret equations (1) can be 
rewritten as 

i = g A r  

where f = 7t+ Kb.  Observe that when a point moves with a unit velocity along the 
space curve the angular velocity of the triad is given by 5. As f is not a derivative of 
any vector r = r (  s), it is sometimes called a non-holonomic vector. Therefore T ds  and 
K ds  are closed but not exact 1-forms; closed contour integrals over these 1-forms will 
give non-zero contributions. 

The angular velocity has components along the tangent vector r and along the 
binormal vector b. Let us consider the plane perpendicular to the tangent r, which 
moves along the curve y with a constant unit velocity. The vectors n and b span this 
plane. However, the natural frame ( n  and b )  rotates around t with an angular velocity 
T ( s ) .  Thus after s has increased from s = 0 to s = so the system develops a phase 

~ ( s )  ds  between n, b and the corresponding non-rotating frame in this plane. = 
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Such a non-rotating frame could be defined by using the usual Fermi-Walker parallel 
transport along the curve y [7] 

(4) -- DA'- ~ A ~ ( t ~ n ' - f ~ n ~ ) = ( ~ b h A } ' .  
ds  

It is this phase that appears, for example, in the process of travelling of light along a 
twisted waveguide. 

However, let us consider the tangent plane to the curve spanned by n(s) and r(s), 
which also travels with a constant velocity along the curve. The natural axes in this 
plane are now given by (r, n), which rotate around b, as the plane moves along the 
curve, with an angular velocity K ( s ) .  If at s = O  the natural axes and the axes of a 
non-rotating frame coincide at s = so they differ by a phase = K ( S )  ds. Here we 
have assumed that our non-rotating frame can be defined in a way similar to the usual 
Fermi-Walker transport; namely by 

However, in the present case, it is the binormal b, and not the tangent r as in the usual 
Fermi-Walker parallel transport, that is parallel transported along the curve. 

Let us finally mention that the usual Fermi- Walker parallel transport as well as 
our modified Fermi-Walker parallel transport are special cases of a Frenet-Serret 
parallel transport along the curve y which is an obvious generalisation of (3), namely 

DA' -- - {Kb h A +  7 t h  A}' = { & A  A}'. 
ds  

The two phases are very similar in their geometric nature. To see this let us consider 
the Euclidean covariant derivative of a vector along the curve y :  

where + = r, ei = r, n, b. Thus 

vtAk =-+-rrk,A'=-+BjkA'. dAk dx'  dAk 
ds  ds ds 

As the Euclidean connection is a pure gauge, the matrix B has the following form 

Bjk = (R-'fi,j" (9) 
where R is a rotation matrix, which can be parametrised by the Euler angles 0, 4 and 
t,h. On the other hand Bjk=(ej)k, which is given by (1). Therefore ( e j ) k  is given by 
( e j ) k  = (I?-*k)F. When written in components this last condition gives us the following 
equations: 

w,  =sin 8 sin t,h d4+cos  CC, d e  = K ( S )  ds  

U,  =sin 8 cos JI d+ -sin t,h d e  = O  (10) 

wb = cos 6 d 4  + d@ = T (  S)  ds  

where 0, 4 and t,h are functions of s, which in what follows we shall treat as 'time'. 
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We can now use the condition of the vanishing of w, and after some algebra we 
find that 

K ds =J(d8)’+sin2 8(dcj)2 

T ds = COS 8 d 4  +d+. 
(11) 

Notice that if we restrict ourselves to curves y ( s )  such that t(O), n ( 0 )  and b(0 )  are 
parallel, respectively, to t (so) ,  n(so)  and b(so)  then the spherical indicatrices of these 
curves correspond to closed curves on S2.  

Next we consider the integrals of the curvature and the torsion of our space curve, 
i.e. the integrals 

From (2) we see that Z, = L, (the length of the tangent indicatrix) and that I, = L, (the 
length of the binormal indicatrix). However, using (1 1) and the Stokes’ theorem we 
also have that 

where the last integral denotes the area bounded by the tangent indicatrix which we 
will denote by a,. Observe that for a closed curve f d+  = 0 as using U, = 0 we can 
show that d$(8 ,4)  is an exact 1-form defined over the whole S2.  We see that, up to 
the additive 27r term, I b  and 0, are equal. 

In fact a similar relation holds between L, and f i b ,  where i&, denotes the area 
bounded by the binormal indicatrix. To show this we have to consider separately two 
different cases, namely: the right-handed ( 7  > 0) and the left-handed ( T < 0) curves. 
In the case of right-handed curves, let us consider the triad (b, -n, t), where now b is 
the unit tangent vector to the new curve n ( s )  and -n and f are its principal normal 
and binormals respectively. The Frenet-Serret formulae for the curve y,(s) now take 
the form 

t = - K n .  

The new curve y,  (s) is again a right-handed curve with curvature T (  s) and with torsion 
K ( s ) .  For the curve y , ( s ) ,  the length of its binormal L, is equal (again, up to the 
addition of 27r) to the area ab bounded by its tangent. 

In the case of a left-handed curve T < O  and so we can introduce T ~ =  -T. Then we 
can consider the triad (-b, -n, - t ) ,  for which -b is now the unit tangent vector, - n  
is its principal normal and -t  is its binormal. The Frenet-Serret formulae are now 

b = Ton 

i = -Tab - K t  

t = K n .  

(15) 

These equations describe now a new curve y2(s) ,  which is again left-handed and has 
curvature T ~ ( S )  and torsion - K ( s ) .  
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As all spherical curves are related (they have related torsions and curvatures) we 
can relate their properties. Thus we have proved that, up to the addition of an overall 

Let us finally consider the principal normal indicatrix. Its line element is given (2) 
2T, Lb=a, and L,=nb. 

by 
dsi  = ds:+ ds i  

= ( d O ) 2 + ( d 4 ) 2 + ( d t , b ) 2 + 2 ~ ~ s  O d 4  dt,b (16) 

where we have used (1 1). Equation (16) identifies ds, with the line element of a curve 
on S3 (of radius R = 2). The movement of the Frenet-Serret triad along the curve y 
traces a curve on S0(3 ) ,  parametrised by the Euler angles e(s ) ,  4 ( s )  and +(s). A 
Hopf map from S3 onto S 2  would map this curve onto the tangent indicatrix with its 
line element ds,. 

The discussion given here can be generalised to higher-dimensional spaces. In 
particular, if we consider the case of four dimensions, we have to consider general 
tetrads and study rotations which connect two such general tetrads. In analogy with 
the three-dimensional case we can introduce generalised Euler angles and show that 
a general rotation can be resolved into six basic rotations in different 2-planes. A 
general curve in four dimensions is now characterised by three quantities: curvature, 
torsion and bitorsion, which all appear in the generalised Frenet-Serret formulae. 

If we now impose the conditions on the general rotation matrix which follow from 
the general form of the Frenet-Serret formulae, we find (after some tedious algebra) 
that the integral over the bitorsion is again given by the length of some curve, except 
that this time the corresponding curve lies on S3 .  This should be compared with the 
result in three dimensions where the corresponding quantity involves the torsion and 
the curve lies on S2.  It should be possible, in analogy with the three-dimensional case, 
to relate the length of this curve on S3  to an integral over the area bounded by a related 
curve which has some topological meaning, but unfortunately, so far, we have not 
succeeded in this task. 

Our discussion has shown that in three dimensions general curves are characterised 
by two local quantities, the curvature and torsion, and that they naturally lead to two 
phase-like quantities, one of which corresponds to the Berry phase. So far our discussion 
has been purely geometrical in nature. To see whether the additional phase we have 
discussed can be observed experimentally depends on the experimental set-up and its 
dynamics. In particular, in the dynamical systems in which one measures the phase 
of the polarised light beam in bent waveguides, the Berry phase arises from the 
interaction of the light beams with the waveguides which keep the polarisation of the 
wave transverse to the direction of propagation. Clearly, we would need to involve 
similar interactions but this time it is the normal component which should vanish or 
be altered as a result of the interaction. We have no specific proposal which exhibits 
such interactions and we leave it as a challenge to the reader to come up with an 
example of an appropriate experimental set-up to exhibit the more general phase. The 
obvious suggestions involve massive spinning particles which could include vector 
mesons (like W or Z) or even spin-f particles like the neutron or proton. However, 
all massive vector mesons are unstable and it is hard to think of situations when the 
spin of the spin-f particles rotates appropriately. But maybe one should seek applica- 
tions elsewhere. 

Of course the issue of whether these quantities (and in particular the second one) 
become phases in quantum systems and are observable is a separate and a non-trivial 
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problem. This problem is currently under investigation and we hope to report on it 
in the near future. 

WJZ would like to thank D K Campbell for useful conversations. RD would like to 
thank A R Bishop, D K Campbell and R Percacci for conversations and D K Campbell 
for hospitality during his stay at CNLS. 
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